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Shortest Paths: 
Why BFS Doesn't 
Work



Graph Problems

Problem Problem Description Solution Efficiency (adj. list)

s-t paths Find a path from s to every 
reachable vertex.

DepthFirstPaths.java
Demo

O(V+E) time
Θ(V) space

s-t shortest 
paths

Find a shortest path from s to 
every reachable vertex.

BreadthFirstPaths.java
Demo

O(V+E) time
Θ(V) space

Last time, saw two ways to find paths in a graph.
● DFS and BFS.

Which is better?

https://docs.google.com/presentation/d/1mr841rMgVAffqi-TfL--gZPmEjAM5rpBW7MzrmJPuaU/edit#slide=id.g25f3bf5f9c7_0_1020
https://docs.google.com/presentation/d/1mHaFA7w9G-wsEPLu-HSpqjm3EYAhDbhrXdcWUJdn4N8/edit#slide=id.g239d0124e83_0_0


BFS vs. DFS for Path Finding

Possible considerations:
● Correctness. Do both work for all graphs?

○ Yes!
● Output Quality. Does one give better results?

○ BFS is a 2-for-1 deal, not only do you get paths, but your paths are also 
guaranteed to have the fewest edges.

● Time Efficiency. Is one more efficient than the other?
○ Should be very similar. Both consider all edges twice. Experiments or very 

careful analysis needed.



BFS vs. DFS for Path Finding

● Space Efficiency. Is one more efficient than the other?
○ DFS is worse for spindly graphs.

■ Call stack gets very deep. 
■ Computer needs Θ(V) memory to remember recursive calls (see 

CS61C).
○ BFS is worse for absurdly “bushy” graphs.

■ Queue gets very large. In worst case, queue will require Θ(V) 
memory.

■ Example: 1,000,000 vertices that are all connected. 999,999 will be 
enqueued at once.

○ Note: In our implementations, we have to spend Θ(V) memory anyway to 
track distTo and edgeTo arrays.
■ Can optimize by storing distTo and edgeTo in a map instead of an 

array.



BreadthFirstSearch for Google Maps

As we discussed last time, BFS would not be a good choice for a google maps 
style navigation application.
● The problem: BFS returns path with shortest number of edges, not necessarily 

the shortest path.
Let’s see a quick example.



Breadth First Search for Mapping Applications

Suppose we’re trying to get from s to t.

 s

 t



Breadth First Search for Mapping Applications

Suppose we’re trying to get from s to t.
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Breadth First Search for Mapping Applications

BFS yields the wrong route from s to t.
● No: BFS yields a route of length ~330 m instead of ~130 m.
● We need an algorithm that takes into account edge distances, also known as 

“edge weights”!
BFS ResultCorrect Result
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Goal: The Shortest 
Paths Tree



Goal: Find the shortest paths from source vertex s to some target vertex t.

Challenge: Try to find the shortest path from town A to town F.
● Each edge has a number representing the length of that road in miles.

Problem: Single Source Single Target Shortest Paths
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Goal: Find the shortest paths from source vertex s to some target vertex t.

Problem: Single Source Single Target Shortest Paths
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Best path from A to F is 
● A -> B -> E -> F.
● Total length is 9 miles.

The path A -> C -> F only 
involves three towns, but total 
length is 16 miles.



Goal: Find the shortest paths from source vertex s to some target vertex t.

Observation: Solution will always be a path with no cycles (assuming non-negative 
weights).

Problem: Single Source Single Target Shortest Paths
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v   distTo[]  edgeTo[]
A     0.0        -
B     2.0       A→B 
C      -         - 
D      -         -
E     5.0       B→E 
F     9.0       E→F 
G      -         -

Shortest path from s=A to t=F



Goal: Find the shortest paths from source vertex s to every other vertex.

Challenge: Try to write out the solution for this graph.
● You should notice something interesting.

Problem: Single Source Shortest Paths
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Goal: Find the shortest paths from source vertex s to every other vertex.

Observation: Solution will always be a tree. 

● Can think of as the union of the shortest paths to all vertices.

Problem: Single Source Shortest Paths

v   distTo[]  edgeTo[]
A     0.0        -
B     2.0       A→B 
C     1.0       A→B 
D    11.0       G→D 
E     5.0       B→E 
F     9.0       E→F 
G    10.0       E→G 
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Shortest paths from s=A



SPT Edge Count: yellkey.com/TODO

If G is a connected edge-weighted graph with V vertices and E edges, how many 
edges are in the Shortest Paths Tree (SPT) of G? [assume every vertex is 
reachable]
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SPT Edge Count

If G is a connected edge-weighted graph with V vertices and E edges, how many 
edges are in the Shortest Paths Tree (SPT) of G? [assume every vertex is 
reachable]

V: 7
Number of edges in SPT 
is 6

Always V-1: 
● For each vertex, 

there is exactly one 
input edge (except 
source).
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Shortest Paths:
• Why BFS Doesn’t Work
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Dijkstra's 
Algorithm: Some 
Bad Algorithms

Won't cover live, see 
videos if you're curious.



Finding a Shortest Paths Tree (By Hand)

What is the shortest paths tree for the graph below? Note: Source is A.
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Finding a Shortest Paths Tree (By Hand)

What is the shortest paths tree for the graph below?
● Annotation in magenta shows the total distance from the source.
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Let’s create an algorithm for finding the shortest paths.
Will start with a bad algorithm and then successively improve it.
● Algorithm begins in state below. All vertices unmarked. All distances infinite. 

No edges in the SPT.

Creating an Algorithm 
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Finding a Shortest Paths Tree Algorithmically (Incorrect)

Bad algorithm #1: Perform a depth first search. When you visit v:
● For each edge from v to w, if w is not already part of SPT, add the edge.

dfs(A):
  Add A->B to SPT
  Add A->C to SPT

dfs(B):
  Add B->D to SPT
  A already in SPT.

dfs(C):
  B already in SPT.
  D already in SPT.
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Older slide, 
used on the 
web videos.



Finding a Shortest Paths Tree Algorithmically (Incorrect)

Bad algorithm #2: Perform a depth first search. When you visit v:
● For each edge from v to w, add edge to the SPT only if that edge yields better 

distance.
dfs(A):
  A->B is 5, < than ∞ 
  A->C is 1, < than ∞

dfs(B):
  B->D is 5 + 2 = 7, better than ∞.
  B->A is 5 + 3 = 8, worse than 0.

dfs(C):
  C->B is 1 + 1 = 2, better than 5.
  C->D is 1 + 5 = 6, better than 7.
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We’ll call this 
process “edge 
relaxation”.

Improvements:
● Use better edges if found.
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Finding a Shortest Paths Tree Algorithmically (Incorrect)

Dijkstra’s Algorithm: Perform a best first search (closest first). When you visit v:
● For each from v to w, relax that edge.

A has lowest dist, so dfs(A):
  A->B is 5, < than ∞ 
  A->C is 1, < than ∞

C has lowest dist, so dfs(C):
  C->B is 1 + 1 = 2, better than 5.
  C->D is 1 + 5 = 6, better than ∞.

B has lowest dist, so dfs(B):
  B->A is 2 + 3 = 5, worse than 0.
  B->D is 2 + 2 = 4, better than 6.
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Improvements:
● Use better edges if found.
● Traverse “best first”.
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Bad Algorithm #1 (Inspired by BFS)
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Add the start (A) to the fringe.
While fringe is not empty:
     Remove a vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)

Add the start (A) to the fringe.
While fringe is not empty:
     Remove a vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.
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Bad Algorithm #1 (Inspired by BFS)

∞
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Fringe: [A]
Removed vertex: A

Add the start (A) to the fringe.
While fringe is not empty:
     Remove a vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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Fringe: [A, B, C]
Removed vertex: A

Add the start (A) to the fringe.
While fringe is not empty:
     Remove a vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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Fringe: [A, B, C]
Removed vertex: B

Add the start (A) to the fringe.
While fringe is not empty:
     Remove a vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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The edge B→A is not 
added to SPT, 
because A is already 
part of the SPT.

Fringe: [A, B, C, D]
Removed vertex: B

Add the start (A) to the fringe.
While fringe is not empty:
     Remove a vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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Fringe: [A, B, C, D]
Removed vertex: C

Add the start (A) to the fringe.
While fringe is not empty:
     Remove a vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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C→B not added, B 
already in SPT.

C→D not added, D 
already in SPT.

Fringe: [A, B, C, D]
Removed vertex: C

Add the start (A) to the fringe.
While fringe is not empty:
     Remove a vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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Fringe: [A, B, C, D]
Removed vertex: D

Add the start (A) to the fringe.
While fringe is not empty:
     Remove a vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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Fringe: [A, B, C, D]
Removed vertex: D

Add the start (A) to the fringe.
While fringe is not empty:
     Remove a vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.

Nothing happens. 

D has no neighbors 
(there are no edges 
going out of D).



Bad Algorithm #1 (Inspired by BFS)

Add the start (A) to the fringe.
While fringe is not empty:
     Remove a vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.

Takeaways:

● This algorithm would work if all our edges were the same length.

Algorithm #1 (BFS) visits:
         every node 1 edge away,
then every node 2 edges away,
then every node 3 edges away, etc.



Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search.
● When we hit one of our original nodes, add edge to the SPT.
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Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search.
● When we hit one of our original nodes, add edge to the SPT.

B

C

As

5

5
D1

∞

0

∞

2
2

1

B

C

As D

∞

0

∞

∞ ∞

Order of visited nodes: A



Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search.
● When we hit one of our original nodes, add edge to the SPT.
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Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search.
● When we hit one of our original nodes, add edge to the SPT.
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Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search.
● When we hit one of our original nodes, add edge to the SPT.
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Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search.
● When we hit one of our original nodes, add edge to the SPT.
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Order of visited nodes: ACBD



Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search.
● When we hit one of our original nodes, add edge to the SPT.
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Order of visited nodes: ACBD



Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search.

Takeaways:
● It works, but can be really slow. For example, consider the graph below.
● What if we measured in inches instead of miles? Or had fractional weights?
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Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search.

Takeaways:

● Algorithm #2 order is sometimes called best-first order.
● Let's try to visit the nodes in the same order as Algorithm #2 did, but without 

creating dummy nodes.

Algorithm #1 (BFS) visits:
         every node 1 edge away,
then every node 2 edges away,
then every node 3 edges away, etc.

Algorithm #2 (dummy nodes) visits:
         every node distance 1 away,
then every node distance 2 away,
then every node distance 3 away, etc.



Bad Algorithm #3 (Best-First Search)

Bad algorithm #3: Perform best-first search.
● Similar to BFS, but we remove the closest edge from the fringe each time.
● We can use a priority queue to track the closest edge.
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Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.

Fringe: [A=0]
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Only difference from Algorithm #1: 
We added the word "closest".



Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.

Fringe: [A=0]
Removed vertex: A
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Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5]
Removed vertex: A
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Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5]
Removed vertex: C
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In BFS, we removed B 
here, but in best-first, 
we're removing C 
because it's closer.



Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: C
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Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: B

∞
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Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: B

The only outgoing 
edge is B→D.
D is already part of the 
SPT, so do nothing. ∞
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Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: D

∞
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Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if w is not already part of SPT,
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: D

No outgoing edges 
from D, so do nothing.
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Bad Algorithm #3 (Best-First Search)

Bad algorithm #3: Perform best-first search.
● Similar to BFS, but we remove the closest edge from the fringe each time.
● We can use a priority queue to track the closest edge.

Takeaways:
● Pro: We visited the nodes in best-first order (same order as in Algorithm #2), 

without creating dummy nodes.
● Con: We got the wrong answer. Why?
● Let's revisit the step where things went wrong.



Bad Algorithm #3 (Best-First Search)

For each outgoing edge v→w: if w is not already part of SPT, add the edge,
mark w, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: C

We should have added edge C→B, and thrown out 
the old edge (A→B) to B. Why?

The distance to B via C→B is 2.

This is better than the currently best known 
distance to B (5, via A→B).

C→B edge: B was in the SPT (via A→B), so we did nothing.

What should we have done here?
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Finding a Shortest Paths Tree Algorithmically

Dijkstra's Algorithm:
● So far, we've added an edge v→w if w is not already part of the SPT.
● Instead, we should add an edge if that edge yields better distance.
● Use the priority queue to track best known distances.
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B

C

As

5
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D1

∞

∞

∞

2
2

1

We'll call this 
process “edge 
relaxation”.



Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if the edge gives a better distance to w, 
     add the edge, and update w in the fringe.

Fringe: [A=0, B=∞, C=∞, D=∞]

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

Key difference from Algorithm #3: 
The condition for adding an edge.
(This used to say "if w not in SPT").

Extra bookkeeping: Instead of 
adding to the fringe as we go, we'll 
add all vertices to start.
This lets us track the best known 
distance to each vertex.



Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if the edge gives a better distance to w, 
     add the edge, and update w in the fringe.

Fringe: [A=0, B=∞, C=∞, D=∞]
Removed vertex: A
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Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if the edge gives a better distance to w, 
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=5, D=∞]
Removed vertex: A
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B

C

As

5

5
D1

∞
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∞
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Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if the edge gives a better distance to w, 
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=5, D=∞]
Removed vertex: C
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As
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∞
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Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if the edge gives a better distance to w, 
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: C

∞
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5
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1

5

1

6

2Improvement: We used C→B because 
the distance via C→B (2) is better than 
the distance via A→B (5).
This also means we throw out the old 
edge (A→B) to B.



Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if the edge gives a better distance to w, 
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: B

∞
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Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if the edge gives a better distance to w, 
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: B

∞
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5
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1
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2
B→A (total=4) is not better than the 
best known way to A (0).

B→D (total=4) is better than the 
best known way to D (6, via C→D).
So, we'll update the path to D. 4



Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if the edge gives a better distance to w, 
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: D

∞
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Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
     Remove the closest vertex from the fringe and mark it.
     For each outgoing edge v→w: if the edge gives a better distance to w, 
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: D

No outgoing edges 
from D, so do nothing.

∞
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Dijkstra's 
Algorithm



Dijkstra’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.
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Dijkstra’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        ∞        -
C        ∞        -
D        ∞        -
E        ∞        -
F        ∞        -
G        ∞        -

5
2

1

15

3

2
11

5

1

1

Fringe: [(B: ∞), (C: ∞), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]
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∞
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1

Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        ∞        -
E        ∞        -
F        ∞        -
G        ∞        -

5
2

1

15

3

2
11

5

1

1

Fringe: [(C: 1), (B: 2), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]
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1
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Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        ∞        -
E        ∞        -
F        ∞        -
G        ∞        -

5
2

1

15

3

2
11

5

1

1

Fringe: [(B: 2), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]
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Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        ∞        -
E        ∞        -
F        16       C
G        ∞        -

5
2

1

15

3

2
11

5

1

1

Fringe: [(B: 2), (F: 16), (D: ∞), (E: ∞), (G: ∞)]
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Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        ∞        -
E        ∞        -
F        16       C
G        ∞        -

5
2

1

15

3

2
11

5

1

1

Fringe: [(F: 16), (D: ∞), (E: ∞), (G: ∞)]
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Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        13       B
E        5        B
F        16       C
G        ∞        -

5
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3

2
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5

1

1

Fringe: [(E: 5), (D: 13), (F: 16), (G: ∞)]
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Vertex C unchanged since 2+5 > 1 

Which vertex is 
removed next?

Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        13       B
E        5        B
F        16       C
G        ∞        -

5
2

1
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3

2
11

5

1

1

Fringe: [(D: 13), (F: 16), (G: ∞)]
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Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        13       B
E        5        B
F        16       C
G        ∞        -

5
2

1

15

3

2
11

5

1

1

Fringe: [(D: 13), (F: 16), (G: ∞)]
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1

Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.
● Show distTo, edgeTo, and fringe after relaxation.



Dijkstra’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        13       B
E        5        B
F        9        E
G        10       E

5
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1
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3

2
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5

1

1

Fringe: [(F: 9), (G: 10), (D: 13)]
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Vertex C unchanged since 5+1 > 1 

Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        13       B
E        5        B
F        9        E
G        10       E

5
2

1

15

3

2
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5

1

1

Fringe: [(G: 10), (D: 13)]
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Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        11       G
E        5        B
F        9        E
G        10       E

5
2

1

15

3

2
11

5

1

1

Fringe: [(D: 11)]
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Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        11       G
E        5        B
F        9        E
G        10       E

5
2

1

15

3

2
11

5

1

1

Fringe: []
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1

9

10

Vertex E unchanged since 11 + 2 > 5
Note: If non-negative weights, impossible for any inactive 
vertex (white, not on fringe) to be improved!

Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        11       G
E        5        B
F        9        E
G        10       E

5
2

1

15

3

2
11

5

1

1

Fringe: []

41

Insert all vertices into fringe PQ, storing vertices in order of distance from source.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.
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Why Dijkstra's is 
Correct



Dijkstra’s Algorithm Pseudocode

Key invariants:
● edgeTo[v] is the best known 

predecessor of v.
● distTo[v] is the best known total 

distance from source to v.
● PQ contains all unvisited 

vertices in order of distTo.

Important properties:
● Always visits vertices in order of 

total distance from source.
● Relaxation always fails on edges 

to visited (white) vertices.

Dijkstra’s:
● PQ.add(source, 0)
● For other vertices v, PQ.add(v, infinity)
● While PQ is not empty:

○ p = PQ.removeSmallest()
○ Relax all edges from p

Relaxing an edge p → q with weight w:
● If distTo[p] + w < distTo[q]:

○ distTo[q] = distTo[p] + w
○ edgeTo[q] = p
○ PQ.changePriority(q, distTo[q])



Guaranteed Optimality

Dijkstra’s Algorithm:
● Visit vertices in order of best-known distance from source. On visit, relax 

every edge from the visited vertex.

Dijkstra’s is guaranteed to return a correct result if all edges are non-negative. 



Guaranteed Optimality

Dijkstra’s is guaranteed to be optimal so long as there are no negative edges.
● Proof relies on the property that relaxation always fails on edges to visited 

(white) vertices.

Proof sketch: Assume all edges have non-negative weights.
● At start, distTo[source] = 0, which is optimal.
● After relaxing all edges from source, let vertex v1 be the vertex with minimum 

weight, i.e. that is closest to the source. Claim: distTo[v1] is optimal, and thus 
future relaxations will fail. Why? 
○ distTo[p]         ≥ distTo[v1] for all p, therefore
○ distTo[p] + w ≥ distTo[v1]

● Can use induction to prove that this holds for all vertices after dequeuing.



Guaranteed Optimality

At start, distTo[source] = 0, which is optimal.
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Guaranteed Optimality

After relaxing all edges from source, let vertex v1 be the vertex with minimum 
weight, i.e. that is closest to the source.

Ss
0

v2

v1

>c
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>c
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v3
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>c v4
>c



Guaranteed Optimality

Claim: distTo[v1] is optimal, and thus future relaxations will fail. Why? 
● distTo[p]         ≥ distTo[v1] for all p, therefore
● distTo[p] + w ≥ distTo[v1]

Ss
0

v2

v1

>c

c

>c

c

v3
>c

>c

>c p
>c

w

This argument holds no matter 
which vertex you label as p.

Here, we set p = v4.



Guaranteed Optimality

Claim: distTo[v1] is optimal, and thus future relaxations will fail. Why? 
● distTo[p]         ≥ distTo[v1] for all p, therefore
● distTo[p] + w ≥ distTo[v1]

Ss
0

v2

v1

>c

c

>c

c

v3
>c

>c

>c v4
>c

w

p
>c

This argument holds no matter 
which vertex you label as p.

Here, we set p = some deeper 
vertex. Cost is still >c because 
you reach p via v3.



Negative Edges

Dijkstra’s Algorithm:
● Visit vertices in order of best-known distance from source. On visit, relax 

every edge from the visited vertex.

Dijkstra’s can fail if graph has negative weight edges. Why?
● The idea of visiting vertices in order of distance no longer makes sense.

Algorithm #2 (dummy nodes) visits:
         every node distance 1 away,
then every node distance 2 away,
then every node distance 3 away, etc.

Add negatively many dummy nodes??Nodes that are distance -1 away??



Negative Edges

Dijkstra’s Algorithm:
● Visit vertices in order of best-known distance from source. On visit, relax 

every edge from the visited vertex.

Dijkstra’s can fail if graph has negative weight edges. Why?
● Relaxation of already visited vertices can succeed.

X

Y

-67
82

101



Negative Edges

Dijkstra’s Algorithm:
● Visit vertices in order of best-known distance from source. On visit, relax 

every edge from the visited vertex.

Dijkstra’s can fail if graph has negative weight edges. Why?
● Relaxation of already visited vertices can succeed.

X

Y

-67
82

101
34 Even though vertex Y has greater distTo at the 

time of its visit, it is still able to modify the 
distTo of a visited (white) vertex.
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Runtime Analysis



Dijkstra’s Algorithm Runtime

Priority Queue operation count, assuming binary heap based PQ:
● add: V, each costing O(log V) time.
● removeSmallest: V, each costing O(log V) time.
● changePriority: E, each costing O(log V) time.

Overall runtime: O(V*log(V) + V*log(V) + E*logV). 
● Assuming E > V, this is just O(E log V) for a connected graph.

# Operations Cost per operation Total cost

PQ add V O(log V) O(V log V)

PQ removeSmallest V O(log V) O(V log V)

PQ changePriority E O(log V) O(E log V)
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A* Idea and Demo



Single Target Dijkstra’s

Is this a good algorithm for a navigation application?
● Will it find the shortest path?
● Will it be efficient?



The Problem with Dijkstra’s

Dijkstra’s will explore every place within nearly two thousand miles of Denver 
before it locates NYC. 



The Problem with Dijkstra’s

We have only a single target in mind, so we need a different algorithm. How can 
we do better?



How can we do Better?

Explore eastwards first?



Introducing A*

Simple idea:
● Visit vertices in order of d(Denver, v) + h(v, goal), where h(v, goal) is an 

estimate of the distance from v to our goal NYC.
● In other words, look at some location v if:

Compared to Dijkstra’s which only considers d(source, v).

○ We know already know the fastest way to 
reach v.

○ AND we suspect that v is also the fastest way to 
NYC taking into account the time to get to v. 

Example: Henderson is farther than Englewood, but 
probably overall better for getting to NYC.



h(v, goal)
1 
3
15
1
1
∞     
0

A* Demo, with s = 0, goal = 6.

B

C

D

E

F

G
As

Node  distTo    edgeTo  
A        0        -      
B        ∞        -     
C        ∞        -     
D        ∞        -     
E        ∞        -     
F        ∞        -          
G        ∞        -     

5
2

1

15

3

2
11

5

1

1

Fringe: [(B: ∞), (C: ∞), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]
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∞
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∞

∞

∞
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1

h(v, goal) is arbitrary. In this example, it’s the min weight edge out of each vertex. 

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).
Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.



h(v, goal)
1 
3
15
1
1
∞     
0

A* Demo, with s = 0, goal = 6.

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        ∞        -
E        ∞        -
F        ∞        -
G        ∞        -

5
2

1

15

3

2
11

5

1

1

Fringe: [(B: 5), (C: 16), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]
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Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).
Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.



h(v, goal)
1 
3
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∞     
0

A* Demo, with s = 0, goal = 6.

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        ∞        -
E        ∞        -
F        ∞        -
G        ∞        -

5
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2
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1

1

Fringe: [(C: 16), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]
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Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).
Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.



h(v, goal)
1 
3
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A* Demo, with s = 0, goal = 6.

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D       13        B
E        5        B
F        ∞        -
G        ∞        -

5
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2
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1

1

Fringe: [(E: 6), (D: 15), (C: 16), (F: ∞), (G: ∞)]
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Which vertex is 
removed next?

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).
Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.
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1 
3
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2
1
∞     
0

A* Demo, with s = 0, goal = 6.

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D       13        B
E        5        B
F        ∞        -
G        ∞        -
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Fringe: [(D: 15), (C: 16), (F: ∞), (G: ∞)]
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Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).
Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.
● Give distTo, edgeTo, and fringe after relaxation



h(v, goal)
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3
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2
1
∞     
0

A* Demo, with s = 0, goal = 6.

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D       13        B
E        5        B
F        9        E
G       10        E
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Fringe: [(G: 10), (D: 15), (C: 16), (F: ∞)]
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Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).
Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.



h(v, goal)
1 
3
15
2
1
∞     
0

A* Demo, with s = 0, goal = 6.

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D       13        B
E        5        B
F        9        E
G       10        E
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Fringe: [(G: 10), (D: 15), (C: 16), (F: ∞)]
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Next vertex to be dequeued is our target, so we’re done!

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).
Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.



h(v, goal)
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2
1
∞     
0

A* Demo, with s = 0, goal = 6.

B

C

D

E

F

G
As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D       13        B
E        5        B
F        9        E
G       10        E
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Observations:

● Not every vertex got visited.
● Result is not a shortest paths tree for vertex A (path to D is 

suboptimal!), but that’s OK because we only care about path to G.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).
Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.



A* Heuristic Example

How do we get our estimate?
● Estimate is an arbitrary heuristic h(v, goal).
● heuristic: “using experience to learn and improve”
● Doesn’t have to be perfect!

For the map to the right, what could we use?



A* Heuristic Example

How do we get our estimate?
● Estimate is an arbitrary heuristic h(v, goal).
● heuristic: “using experience to learn and improve”
● Doesn’t have to be perfect!

For the map to the right, what could we use?
● As-the-crow-flies distance to NYC.

/** h(v, goal) DOES NOT CHANGE as algorithm runs. */

public method h(v, goal) {

   return computeLineDistance(v.latLong, goal.latLong);

}



A* vs. Dijkstra’s Algorithm

http://qiao.github.io/PathFinding.js/visual/

Note, if edge weights are all equal (as here), Dijkstra’s 
algorithm is just breadth first search.

This is a good tool for understanding distinction 
between order in which nodes are visited by the 
algorithm vs. the order in which they appear on the 
shortest path.
● Unless you’re really lucky, vastly more nodes are 

visited than exist on the shortest path.

http://qiao.github.io/PathFinding.js/visual/


Lecture 24, CS61B, Spring 2024

Shortest Paths:
• Why BFS Doesn’t Work
• Goal: The Shortest Paths Tree

Dijkstra’s Algorithm
• Some Bad Algorithms
• Dijkstra’s Algorithm
• Why Dijkstra’s is Correct
• Runtime Analysis

A*
• A* Idea and Demo
• A* Heuristics (CS188 Preview)

A* Heuristics 
(CS188 Preview)



Impact of Heuristic Quality

Suppose we throw up our hands and say we don’t know anything, and just set h(v, 
goal) = 0 miles. What happens?

What if we just set h(v, goal) = 10000 miles?

A* Algorithm:
Visit vertices in order of d(Denver, v) + h(v, goal), where h(v, goal) is an estimate of 
the distance from v to NYC.



Impact of Heuristic Quality

Suppose we throw up our hands and say we don’t know anything, and just set h(v, 
goal) = 0 miles. What happens?
● We just end up with Dijkstra’s algorithm.

What if we just set h(v, goal) = 10000 miles?
● We just end up with Dijkstra’s algorithm.

A* Algorithm:
Visit vertices in order of d(Denver, v) + h(v, goal), where h(v, goal) is an estimate of 
the distance from v to NYC.



Impact of Heuristic Quality

Suppose you use your impressive geography knowledge and decide that the 
midwestern states of Illinois and Indiana are in the middle of nowhere: 
h(Indianapolis, goal)=h(Chicago, goal)=...=100000.
● Is our algorithm still correct or does it just run slower?



Impact of Heuristic Quality

Suppose you use your impressive geography knowledge and decide that the 
midwestern states of Illinois and Indiana are in the middle of nowhere: 
h(Indianapolis, goal)=h(Chicago, goal)=...=100000.
● Is our algorithm still correct or does it just run slower?

○ It is incorrect. It will fail to find the shortest path by dodging Illinois.



Heuristics and Correctness (EXTRA: Beyond Course Scope)

For our version of A* to give the correct answer, our A* heuristic must be:
● Admissible: h(v, NYC) ≤ true distance from v to NYC.
● Consistent: For each neighbor of w:

○ h(v, NYC) ≤ dist(v, w) + h(w, NYC).
○ Where dist(v, w) is the weight of the edge from v to w.

This is an artificial intelligence topic, and is beyond the scope of our course.
● We will not discuss these properties beyond their definitions. See CS188 

which will cover this topic in considerably more depth.
● You should simply know that the choice of heuristic matters, and that if you 

make a bad choice, A* can give the wrong answer.
● You will not be expected to tell us whether a given heuristic is admissible or 

consistent unless we define these terms on an exam.

Our heuristic was 
inadmissible and 
inconsistent.



Consistency and Admissibility (EXTRA: Beyond Course Scope)

All consistent heuristics are admissible.
● ‘Admissible’ means that the heuristic never overestimates.

Admissibility and consistency are sufficient conditions for certain variants of A*.
● If heuristic is admissible, A* tree search yields the shortest path.
● If heuristic is consistent, A* graph search yields the shortest path.
● These conditions are sufficient, but not necessary.

Heuristics that Yield Correct NYC Route
Admissible

Consistent

Our version of A* is 
called “A* graph 
search”. There’s 
another version 
called “A* tree 
search”. You’ll learn 
about it in 188.



Summary: Shortest Paths Problems

Single Source, Multiple Targets:
● Can represent shortest path from start to every vertex as a shortest paths tree 

with V-1 edges.
● Can find the SPT using Dijkstra’s algorithm.

Single Source, Single Target:
● Dijkstra’s is inefficient (searches useless parts of the graph).
● Can represent shortest path as path (with up to V-1 vertices, but probably far 

fewer).
● A* is potentially much faster than Dijkstra’s.

○ Consistent heuristic guarantees correct solution.



Graph Problems

Problem Problem Description Solution Efficiency

paths Find a path from s to every 
reachable vertex.

DepthFirstPaths.java
Demo

O(V+E) time
Θ(V) space

shortest paths Find the shortest path from s to 
every reachable vertex.

BreadthFirstPaths.java
Demo

O(V+E) time
Θ(V) space

shortest 
weighted paths

Find the shortest path, 
considering weights, from s to 
every reachable vertex.

DijkstrasSP.java
Demo

O(E log V) time
Θ(V) space

shortest 
weighted path

Find the shortest path, consider 
weights, from s to some target 
vertex

A*: Same as Dijkstra’s 
but with h(v, goal) 
added to priority of 
each vertex.
Demo

Time depends on 
heuristic.

Θ(V) space

https://docs.google.com/presentation/d/1mr841rMgVAffqi-TfL--gZPmEjAM5rpBW7MzrmJPuaU/edit#slide=id.g25f3bf5f9c7_0_1020
https://docs.google.com/presentation/d/1mHaFA7w9G-wsEPLu-HSpqjm3EYAhDbhrXdcWUJdn4N8/edit#slide=id.g239d0124e83_0_0
#

